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Abstract. A microscopic model for the description of the proton subsystem dynamics in super-
ionic crystals with hydrogen bonds is developed. Besides the inclusion of the proton-transport
mechanism, the effect of the displacement of the nearest oxygens during hydrogen-bond formation
is taken into account. The latter effect is the cause of the strong proton–phonon coupling that leads
to the polaronic effect. Using the occupation number formalism, the virtual (in superionic phases)
or ordered (in low-temperature phases) character of the hydrogen-bonded system is taken into
account on the basis of the proton-ordering model. Protonic conductivity studies are carried out in
the framework of the Kubo theory for the cases of superionic phases as well as low-temperature
phases with different types of proton ordering (as an example the M3H(XO4)2 class of crystals
is considered). The temperature dependencies of the conductivity are analysed. The activation
energies for the static conductivity are determined; for this case the influence of the internal field
which appears as a result of the proton ordering is investigated.

1. Introduction

Hydrogen-bonded superionic crystals are well known for their proton orderings at low
temperatures as well as for high protonic conductivity which increases significantly in the
high-temperature superionic phases. In this case the conductivity phenomenon is connected
with the dynamical disordering of the hydrogen-bond network, resulting in an increase of the
number of possible positions for protons. It is generally accepted from the results of neutron
scattering studies [1–3] that the proton transport proceeds in the framework of the two-stage
Grotthuss mechanism. This process includes the transfer of the proton within the hydrogen
bond (intrabond motion) and breaking of the hydrogen bond together with the reorientation
of the ionic group involved in the hydrogen-bond formation (interbond transfer). Despite the
detailed experimental investigation of the proton migration process, there still exist unresolved
problems in the theoretical description of this phenomenon. This is due to the complexity of
the problem of proton transport in the two- or three-dimensional hydrogen-bond network.

In this work the crystals which belong to the M3H(XO4)2 (M = Rb, Cs, NH4; X = Se, S)
family are considered as the subjects for protonic conductivity investigations. In these
compounds the conductivity is significantly higher in the conducting planes formed by the
vertex O(2) oxygens connected by the virtual hydrogen bonds in superionic phases.

The crystals of this class are isomorphic, which explains the similarity of the phase
sequences occurring in them. In most cases the superionic phase of trigonal symmetry trans-
forms on cooling into a ferroelastic phase of monoclinic or triclinic symmetry with further
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ferroelectric ordering. The typical crystalline structure of the unit cell in the superionic phase
with coordinatesRm = m1a1 +m2a2 +m3a3 in the rhombohedral coordinate system with the
lattice vectors
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3

2
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1
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3
c

)
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3
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0,−a0,
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c
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(a0 = 3.5 Å, c = 22.9 Å) is shown in figure 1. There are two XO4 groups and three virtual
hydrogen bonds,f = 1, 2, 3, adjacent to the upper group XO(1)4 in the elementary unit cell.
Another three hydrogen bonds near the lower XO(2)

4 group belong to the neighbouring unit
cells with the vectorsRm − af .

Figure 1. A projection of the rhombohedral primitive unit cell of M3H(XO4)2 with lattice vectors
a1,a2,a3 on the (001) plane in the hexagonal coordinate system in the superionic phase. The open,
solid and hatched big circles correspond to the possible positions of O(2) oxygens with different
values ofz; A (z = 0), B (z = 1/3) and C (z = −1/3) denote the positions of X atoms in XO(2)4
groups. The small circles indicate the proton positions within the hydrogen bond.

In the low-temperature phase the frozen-in hydrogen bonds form well-defined sequences
of dimers consisting of XO4 tetrahedra connected by the O(2)(1)–H–O(2)(2) hydrogen bridges.
Two types of ordering with different characters of the dimer sequences can occur in this crystal
class. In the first case (phase III for (NH4)3H(SeO4)2 (TAHSe), phase III for Rb3H(SeO4)2

(TRHSe)) the doubling of the unit cell along one of the translation vectorsaf corresponds to
the star{k} = { 12b1, 1

2b2, 1
2b3} in Kovalev notation [4]. In particular, the alternating dimer

sequences along thea1- anda2-directions are formed for the case wherek4 = 1
2b3.

Another type of ordering (phase IV in TAHSe, phase II in (NH4)3H(SO4)2) is distinguished
by the parallel sequences of dimers which include hydrogen bridges of the same indexf .
However, the hydrogen bonds are shifted alternately by±δ (δ = 0.025b whereb is the lattice
parameter in phase IV) in the (x,y) plane. This corresponds to the ordering with the vector
k = 1

2(b1 + b2 + b3).
The rearrangements of the hydrogen-bond network at the superionic phase transitions have

been studied in the framework of the lattice-gas-type model given in [5] with the following



Protonic conductivity at superionic phase transitions 5101

Hamiltonian:

H = 1

2

∑
mm′
ff ′

8ff ′(mm
′)nmf nm′f ′ − µ

∑
mf

nmf (1)

wherenmf = {0, 1} is the proton occupation number for positionf in the primitive unit cell at
Rm; 8ff ′(mm

′) is the energy of the proton interactions andµ denotes the chemical potential
which determines the average proton concentration.

Investigations of the thermodynamic properties of the proton subsystem have been carried
out in [5, 6] using the molecular-field approximation (MFA) as well as taking into account
the short-range proton correlations. The influence of the XO4 ionic group reorientations on
the phase sequence has been also studied in [7]. It turned out that this effect is of primary
importance for the description of the phase sequence occurring in TAHSe with two superionic
(I, II) and two ferroelastic III and IV phases.

This work uses the results concerning the proton-ordering description for the evaluation
of the protonic conductivity. It is shown that the distinction of the different types of hydrogen
bonding (virtual in the superionic phases and ordered at low temperatures) leads to temperature
dependencies of the protonic conductivity that are similar to the experimentally observed ones.

2. The polaronic effect and proton dynamics

It is well known from [8–10] that the creation of the hydrogen bond induces the deformation
of the XO4 groups involved in the bond formation. In particular, this process is accompanied
by a shortening of the distance between the neighbouring vertex oxygens O(2)(1) and O(2)(2)

that leads to the localization of the proton between these ions (the so-called polaronic effect)
as well as to an increase of the activation energy for the bond breaking and hopping of the
protonic polaron to another localized position in the lattice. To account for this fact one should
determine the normal vibration modes of the vertex oxygen ions in the conducting planes.

The potential energy of the vertex oxygen subsystem in the harmonic approximation is
given by

φ = φ0 +
∑
mm′

∑
kk′

∑
αβ=1,3

φαβ(mk;m′k′)uα(mk)uβ(m′k′)

wherek = 1, 2 is the sublattice number of themth unit cell and the force constants

φαβ(mk;m′k′) = ∂2φ

∂uα(mk) ∂uβ(m′k′)

∣∣∣∣
0

.

Taking into account the interaction between nearest neighbours in the(x, y)plane (the distances
between the upper and lower sublattice oxygens O(2) in the cell are about 7.3 Å and exceed the
separation between nearest oxygens in the(x, y) plane which amounts to 3.5 Å), the matrices
φ(mk;m′k′) can be represented in the following form:

φ(m1;m + a1, 2) =
(
ϕ1 ϕ2

ϕ2 ϕ1 + (2/
√

3)ϕ2

)
φ(m1;m + a2, 2) =

(
ϕ1 −ϕ2

−ϕ2 ϕ1 + (2/
√

3)ϕ2

)
φ(m1;m + a3, 2) =

(
ϕ1 +
√

3ϕ2 0
0 ϕ1− ϕ2/

√
3

)
φ(mk;mk) =

(
ϕ0 0
0 ϕ0

)
.



5102 N I Pavlenko

Considering only displacements of the O(2) oxygens in the(x, y) plane, we have the
following dynamical matrix:

D(k) =
[
D11 D12

D21 D22

]
whereD12(k) is[
ϕ1(eik·a1 + eik·a2) + (ϕ1 +

√
3ϕ2)eik·a3 ϕ2(eik·a1 − eik·a2)

ϕ2(eik·a1 − eik·a2) (ϕ1 + 2
√

3ϕ2)(eik·a1 + eik·a2) + (ϕ1−
√

3ϕ2)eik·a3

]
and

D11(k) = D22(k) =
[
ϕ0 0
0 ϕ0

]
D21(k) = D12(−k).

The problem of determination of the normal optical vibrational modes thus reduces to the
evaluation of the eigenvalues (vibration frequencies) and polarization vectors of the matrix
D(k). In particular, for the case wherek = 0 we have

ω1/3(0) = ϕ0 + (3ϕ1 +
√

3ϕ2) ω2/4(0) = ϕ0 − (3ϕ1 +
√

3ϕ2) (2)

u1 = 1√
2


1
0
1
0

 u2 = 1√
2


0
−1
0
1

 u3 = 1√
2


0
1
0
1

 u4 = 1√
2


−1
0
1
0


(3)

which points to the existence of two different types (in-phase and anti-phase) of oxygen
vibration with different frequencies. A similar situation is observed for other specific positions
of the Brillouin zone.

We should take into account the change of the proton potential on the hydrogen bond due
to the anti-phase vibrations of the oxygen ions that leads to the shortening of the bond length.
Thus the modesj = 2 andj = 4 are considered with the coordinates of the polarization
vectorsu2 andu2 approximated by their values atk = 0. After that, the interaction of the
protons with the oxygen vibrations can be represented in the second-quantization form

Hpr−ph =
∑
mf

∑
kj

τmf (kj)(bkj + b+
−kj )nmf (4)

whereb+
kj , bkj are the phonon creation and annihilation operators of thej th optical branch for

the vectork. The coefficientsτmf (kj) are given by

τm1(kj) = −
√

h̄

2NMωj(k)
∇V

{
(ujx(1)− (1/

√
3)ujy(1)) exp[ik ·Rm]

− (ujx(2)− (1/
√

3)ujy(2)) exp[ik · (Rm + a1)]
}

τm2(kj) =
√

h̄

2NMωj(k)
∇V

{
(ujx(1) + (1/

√
3)ujy(1)) exp[ik ·Rm]

− (ujx(2) + (1/
√

3)ujy(2)) exp[ik · (Rm + a2)]
}

τm3(kj) = −
√

h̄

2NMωj(k)
∇V 2√

3

{
ujy(1) exp[ik ·Rm] − ujy(2) exp[ik · (Rm + a3)]

}
(5)

where∇V = ∂V (rmf −R0
m1)/∂u1(m, 1), wherermf is the proton coordinate in thef th bond

of themth unit cell;V (rmf −R0
m1) is the interaction potential of the proton and the oxygen

ion O(2)(1) of the upper ionic group XO(1)4 ; M is the oxygen-ion mass.
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In addition, the vibration energy of the oxygen subsystem in the harmonic approximation
is given by

Hph =
∑
kj

h̄ωj (k)b
+
kj bkj . (6)

From the results of recent x-ray studies [11] it is known that the O(2)(1)–O(2)(2) separation
length can be reduced to 2.3–2.4 Å in the superionic phases which leads to near barrierless
proton transfer in the hydrogen bond [12]. Thus the description of the proton mobility can be
based on the assumption of a one-minimum proton potential on the bond. With this conjecture,
the proton-transport process can be considered as the dynamical breaking and creation of the
hydrogen bonds connected with the HXO−4 ionic group rotations:

Ht = �R
∑
m

f 6=f ′

{
c+
mf cmf ′ + c

+
m+af−af ′ ,f cmf ′

}
. (7)

Herec+
mf , cmf are the proton creation and annihilation operators. We represent the interbond

proton transfer as the quantum pseudo-tunnelling between two states (two virtual hydrogen
bonds) with corresponding transfer integral�R.

We emphasize that a more comprehensive study of the protonic conductivity requires,
besides considering the reorientational interbond proton transfer, taking into account add-
itionally the intrabond proton tunnelling processes in the double-well proton potential on
the hydrogen bond. By this means the two-stage Grotthuss transport mechanism could be
described. The detailed analysis of the contributions of both components (reorientational and
tunnelling) to the total protonic conductivity has revealed the dominant role of the first one
in the static and low-frequency conductivity part. However, we find that the high-frequency
conductivity has some peculiarities which arise due to the intrabond tunnelling; the results of
these investigations will be presented elsewhere. Furthermore, in this work we will dwell in
more detail on the analysis of the temperature behaviour of the protonic conductivityσ(ω, T )

in the limitω→ 0 for the superionic and low-temperature ordered phases.
Applying the canonical Lang–Firsov transformation to the new equilibrium states of

relaxed oxygens with the proton between them,

H̃ = eiSHe−iS

where

S =
∑
mf

nmf vmf vmf = i
∑
kj

τmf (kj)

h̄ωj (k)
(bkj − b+

−kj ) (8)

we have the following Hamiltonian:

H̃ = −µ̃
∑
mf

nmf +
1

2

∑
mm′
ff ′

8̃ff ′(mm
′)nmf nm′f ′ +

∑
kj

h̄ωj (k)b
+
kj bkj + H̃t

H̃t = �R
∑
m

f 6=f ′

{
c+
mf cmf ′Xff ′(mm) + c+

m+af−af ′ ,f cmf ′Xff ′(m + af − af ′ , m)
} (9)

with the band-narrowing factor given by

Xff ′(mm
′) = exp

[
−
∑
kj

1τff ′(mm
′|kj)

h̄ωj (k)
(bkj − b+

−kj )

]
1τff ′(mm

′|kj) = τmf (kj)− τm′f ′(kj).
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Here,

µ̃ = µ +
∑
kj

|τmf (kj)|2
h̄ωj (k)

8̃ff ′(mm
′) = 8ff ′(mm

′)− 2
∑
kj

τmf (kj)τm′f ′(−kj)
h̄ωj (k)

are the proton chemical potential and the energy of interaction between protons, which are
renormalized due to the lattice polarization and formation of the protonic polaron as a result.

The description of the proton ordering using Hamiltonian (9) without directly including the
transfer termH̃t has been performed in [5,7]. It is shown that the molecular-field approximation
gives qualitatively correct results concerning the phase transition sequence in M3H(XO4)2

crystals, although additional inclusion of the molecular-field fluctuations could provide a
significant decrease of the transition temperatures. Therefore it is reasonable to first account
for the fluctuations, because this makes possible a quantitative comparison between the results
from the theoretical studies and experimental data.

3. Thermodynamical properties of the proton subsystem

As noted above, we will use the proton part of Hamiltonian (9) without including the transfer
term for the description of the proton subsystem thermodynamics. For the estimation of the
range of validity of such an approximation, let us consider the polaron band-narrowing factor

〈Xff ′(mm′)〉 = exp

[
−1

2

∑
kj

|1τff ′(mm′|kj)|2
(h̄ωj (k))2

cotanh

(
1

2
βh̄ωj (k)

)]

= exp

[
−5

3

E0

h̄ω0
cotanh

(
1

2
βh̄ω0

)]
.

Here the optical phonon branch frequenciesω2(k) = ω4(k) = ω0 are approximated by their
values at the centre of the Brillouin zone and the polaron binding energy is

E0 = h̄2(∇V )2/2M(h̄ω0)
2.

Furthermore, the strong-proton–phonon-coupling regime that leads to the formation of the
small polarons is considered (we will see below that the strong polaron effect actually occurs
in these systems). Setting̃E0 = E0/|a| ∼ 1, h̄ω0/|a| ∼ 0.6 (wherea = (1/√2)[8̃11(k =
0)− 8̃12(k = 0)]) we obtain that the polaron bandwidthδ is

δ ∼ �R〈Xff ′(mm′)〉 ∼ 0.1�R (10)

for τ0 ∼ kT /|a| ∼ 0.1 and narrows exponentially with further temperature increase. Thus
for τ > τ0 the polaronic bands degenerate practically to localized states due to the difference
in vibration phases of the neighbouring oxygen wave functions [13]. In this case the proton-
transport process is solely phonon-activated hopping between localized positions in the lattice.

For the description of the different types of proton ordering existing in these superionic
systems, we introduce the order parameters analogously to [5]. In particular, for the case of
the orientation state characterized by the vectork4 = 1

2b3 in phase III (TAHSe) andk7 = 0
(phase IV when the H-bond shifts are neglected for simplicity), the two order parameters are
given by

u = 1√
2
(〈n1+〉 − 〈n2+〉) v = 1√

6
(〈n1+〉 + 〈n2+〉 − 2〈n3+〉) (11)

(the labelsi = {+,−} correspond to even and odd indicesm3 of themth unit cell respectively)
with the thermodynamical averages〈n1−〉 = 〈n2+〉, 〈n2−〉 = 〈n1+〉 and〈n3−〉 = 〈n3+〉. The
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average proton concentration per unit cell

n̄ = 1

N

∑
mf

〈nmf 〉 = 1

for this crystal class.
To develop the expressions for the average proton occupancies〈nf i〉, we will use the

high-density expansion method in the framework of the classification of the thermodynamical
perturbation series in the corresponding powers of the 1/z parameter (wherez is the number
of neighbours interacting with a given proton). In this case the proton part of the Hamiltonian
(9) can be rewritten in the form

H̃pr = H̃MF + (H̃pr − H̃MF ) = H̃MF + H̃ ′pr (12)

where the MFA Hamiltonian

H̃MF = U0 +
∑
mf

(γf (m)− µ)nmf whereU0 = −1

2

∑
mm′
ff ′

8̃ff ′(mm
′)〈nmf 〉〈nm′f ′ 〉

and the self-consistent internal fields

γf (m) = γf i =
∑
m′f ′

8̃ff ′(mm
′)〈nm′f ′ 〉

appear as a result of the long-range interactions between protons. The zero-order terms in
the expansions for the averages〈· · ·〉 = 〈· · · σ(β)〉0/〈σ(β)〉0 (hereσ(β) = exp(−βH̃ ′pr)
and〈· · ·〉0 = Sp· · ·e−βH̃MF /Sp e−βH̃MF ) with respect to the perturbation term̃H ′pr lead to the
molecular-field approximation and the fluctuation effects are to be introduced by the terms of
higher order. In particular, choosing a certain infinite partial sum in the corresponding series,
to account for the Gaussian fluctuations of the molecular field (GFA) [14], we obtain

〈nf i〉 = 1√
2π

∫ ∞
−∞

dξ e−ξ
2/23

(
y +

√
2(x2)

i
f ξ
)

(13)

where3[l](y) = ∂l+1Q(y)/∂yl+1 are thelth-order semi-invariants,Q(y) = ln(1 + exp(y))
andy = β(µ− γf i). Using the approach proposed in [15] which does not lead to unphysical
results, the mean square Gaussian fluctuations for the sublattice(f, i) are given by

(x2)
i
f =

1

N

∑
k

{β8̄(k)3̄[1]β8̄(k)} (14)

where the proton interaction Fourier transform matrix8̄(k) = <{8ii ′
ff ′(k)} and the second-

order semi-invariants matrix renormalized by the Gaussian distribution

3̄[1] = {3̄[1]ii ′
ff ′ }δff ′(i − i ′) = {3̄[1]

f i } 3̄
[1]
f i =

1√
2π

∫ ∞
−∞

dξ e−ξ
2/23[1]

(
y +

√
2(x2)

i
f ξ
)

are introduced.
It is easy to verify that the stationarity conditions for the free energyF

∂F

∂u
= ∂F

∂v
= ∂F

∂(x2)
i
f

= 0 (15)

are equivalent to equations (11) and (14) with the free energy of the following form:

F = −N
2
(γ0 +

√
6av2 +

√
2bu2) +µNn̄

− 2
4

∑
k

∑
f

∑
i={+,−}

(β8̄(k)3̄[1])2f i −
N

2
2
∑
f i

(Q̄f i − (x2)
i
f 3̄

[1]
f i ) (16)
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where2 = kT and

γ0 = n̄

3

∑
mm′
ff ′

8̃ff ′(mm
′) Q̄f i = 1√

2π

∫ ∞
−∞

dξ e−ξ
2/2Q

(
y +

√
2(x2)

i
f ξ
)

andb = (1/√6)(8̃11(k4)−8̃12(k4)). Besides (15), from the condition∂F/∂µ = 0 we obtain
the equation for the proton chemical potential:

n̄ = 〈n1+〉 + 〈n2+〉 + 〈n3+〉 (17)

which should be solved for the given proton concentrationn̄.
The self-consistent system of equations (11), (14) and (17) is computed numerically. The

results of the investigations of stable regions corresponding to the different types of ordering are
represented in the form of a phase diagram (τ , b̃ = b/a) in figure 2. The MFA phase diagram
obtained in [5] ((x2)

i
f → 0) is shown in the inset for comparison. It is worthwhile noting

that our approach yields a better agreement with the experiment than the previous results [5],
significantly decreasing the critical temperatures. In particular, forb̃ = 1.688, corresponding
to TAHSe crystal [7], we haveT GFAc = 330 K which agrees closely with the experimentally
obtained valueTc = 302 K. Because of this, for the evaluation of the protonic conductivity
we will take into account the temperature dependencies of the thermodynamical functions,
average proton occupancies〈nf i〉 and proton chemical potentialµ obtained in this section
using the GFA.

0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0
0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

~
b

IIIIV

τ
II

~IIIIV

II

b

τ

0 2 4

0.0

0.5

1.0

Figure 2. The (τ , b̃) phase diagram obtained by including the Gaussian fluctuations of the molecular
field (GFA); inset: the MFA results are shown for comparison. The full and broken curves indicate
the first- and second-order phase transitions respectively.

4. Analysis of the protonic conductivity

The conductivity of the protons can be found in the framework of the Kubo linear response
theory [16]:

σ(ω, T ) = 1

V

∫ ∞
0

dt exp[i(ω + iε)t ]
∫ β

0
dλ 〈J (t − ih̄λ)J (0)〉 (18)

whereV is the crystal volume and the proton current operatorJ = (e/ih̄)[H̃ , x] (x =∑
mf nmf rmf is the proton polarization operator). Furthermore, we will consider the polaronic

transport which corresponds to phonon-activated hopping, because of the dominance of the
contribution of this part to the total protonic conductivity at high temperatures [13]. The
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polaronic current, which describes the hopping between the localized sites in the lattice, is
given by

Jp = e�R

ih̄

∑
m

∑
f 6=f ′

Rff ′ [c
+
mf cmf ′X̃ff ′(mm) + c+

mf cm+af−af ′ ,f ′X̃ff ′(m,m + af − af ′)]. (19)

Here the vectorsRff ′ = Rff ′(mm) = rmf − rmf ′ connect the centres of the hydrogen bonds
and the operators̃Xff ′(mm′) = Xff ′(mm

′) − 〈Xff ′(mm′)〉 characterize the phonon scatt-
ering processes which accompany the proton transfer. In this case the correlation function
〈Jp(z)Jp(0)〉 (z = t − ih̄λ) in (18) will be evaluated in the second-order perturbation theory
applied to hopping term�R. This allows us to decouple the following averages:

〈c+
mf (z)cm′f ′(z)X̃ff ′(mm

′)|t=zc+
m1f1

cm′1f
′
1
X̃f1f

′
1
(m1m

′
1)〉

→ 〈c+
mf (z)cm′f ′(z)c

+
m1f1

cm′1f
′
1
〉〈X̃ff ′(mm′)|t=zX̃f1f

′
1
(m1m

′
1)〉

into proton and phonon parts which can be evaluated separately. The proton correlators can
be obtained by taking the proton part of the Hamiltonian (9) in the MFA:

〈c+
mf (z)cm′f ′(z)c

+
m1f1

cm′1f
′
1
〉 = δff ′1(m−m′1)δf ′f1(m

′ −m1)〈nmf 〉(1− 〈nm′f ′ 〉)

× exp

[
iz

2h̄
[γf (m)− γf ′(m′) + 8̃ff ′(mm

′)(〈nmf 〉 − 〈nm′f ′ 〉)]
]
. (20)

The processes that we are interested in are going on in the temperature range near the
superionic phase transition. This allows us to assume that∑

kj

|1τff ′(mm′|kj)|2
(h̄ωj (k))2 sinh 1

2βh̄ωj (k)
� 1

which is valid at high temperatures and in the strong-proton–phonon-coupling regime. In this
case, evaluation of the phonon correlation functions yields

9ff ′ = 〈X̃ff ′(mm′)|t=zX̃f ′f (m′m)〉

= exp

[
−
∑
kj

|1τff ′(mm′|kj)|2
(h̄ωj (k))2

tanh
1

4
βh̄ωj (k)

]
exp

[
− (z + 1/2ih̄β)2

4τ̃ 2

]
(21)

where the parameter̃τ which characterizes the average hopping time length between two
localized positions is given by

1

τ̃ 2
= 2

∑
kj

|1τff ′(mm′|kj)|2
h̄2 sinh 1

2βh̄ωj (k)
τ̃ 2 = 3

40
β
h̄2

E0
. (22)

We use the procedure proposed in [17] with the deformation of the integration contour in
the complex plane for the integration of expressions (21) overt andλ. The resulting expression
for the real part of the conductivity along the direction given by the vectorr is the following:

σ(ω)r = e2�2
R

h̄2

2
√
π

vc

sinhβh̄ω/2

h̄ω/2
exp

[
−5

3
βE0

]
τ̃

×
∑
f 6=f ′

(Rr
ff ′)

2〈nf+〉(1− 〈nf ′+〉) exp

[
1

2
βh̄αff ′ − τ̃ 2(ω + αff ′)

2

]
(23)

wherevc is the unit-cell volume,αff ′ = 80(1− 〈nf+〉 + 〈nf ′+〉)/2h̄, 80 = 8̃ff ′(m,m) =
8̃ff ′(m,m + af − af ′) is the interaction between the nearest neighbours andRr

ff ′ is the
projection ofRff ′ onr.
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After consideration of (23), it becomes apparent that several different activation energies
exist in the system:

Eff
′

a =
5

3
E0 − 1

4
80(1− 〈nf+〉 + 〈nf ′+〉) +

3

160
82

0(1− 〈nf+〉 + 〈nf ′+〉)2/E0 (24)

which correspond to the contributions of the different transfer processes (here we imply the
polaron hopping between the different sublatticesf ) and appear in the expression for the
conductivity with different weight factors which change with temperature. It should be noted
that the total activation energy (24) consists of a polaronic part (the first term) and a part
which appears as a result of the interproton interactions and proton orderings. Thus the
temperature dependence of the different phonon-activated transfer processes is determined by
the redistribution of the average proton occupancies of the three sublatticesf . In particular,
in the superionic phase where the hydrogen-bond network is disordered, there is only one
activation energy:E0

a = 5
3E0 − 1

480 + 3
1608

2
0/E0.

In the low-temperature phase with the phase III (TAHSe) proton-ordering type (〈n1+〉 = 1,
〈n2+〉 = 〈n3+〉 = 0 and 〈n2−〉 = 1, 〈n1−〉 = 〈n3−〉 = 0) in the saturation state,
E23
a = 5

3E0− 1
480 + 3

1608
2
0/E0 with zero weight andE12

a = E13
a = 5

3E0 > E0
a if E0 >

3
4080,

which holds in the case of the strong polaronic effect. In the phase with the ordering of
phase IV (TAHSe) type (〈n3i〉 = 1, 〈n1i〉 = 〈n2i〉 = 0), the saturation activation energy
E31
a = E32

a = 5
3E0. Therefore the activation energy in the ordered phases is always higher

than that in the superionic phase, which agrees with the experimental observations [18,19].
The temperature dependencies of the static conductivity evaluated using (23) along two

different directions (210) and (010) in the (001) plane are shown in figures 3(a) and 4(a) for the
different values of the polaron binding energyE0 and for different types of phase transition.
The corresponding average proton occupancies of sublatticesf as functions of temperature
are represented in figures 3(b) and 4(b). One can see that atτ = τsi (τsi is the superionic phase
transition temperature) the conductivity strongly increases, which corresponds to the kink in
the logarithmic scale (see the insets). Furthermore, the increase of the energyE0 leads to lower
values ofσ , which are evident due to the stronger localization of the proton in the hydrogen
bond.
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Figure 3. The temperature dependences of (a) the protonic conductivityσ̃ = σ/c0, where
c0 = 2e2a2

0�
2
R

√
π/h̄vc|a|2 for b̃ = 1 (the first-order superionic phase transition to the ordered

state with phase IV (TAHSe) proton-ordering type),80/|a| = 0.55; inset: the case wherẽE0 = 0.5
on a logarithmic scale; and (b) the H-bond average proton occupancies obtained in the GFA.
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Figure 4. The temperature dependences of (a) the protonic conductivityσ̃ for b̃ = 1.73 (the
first-order superionic phase transition to the ordered state with phase III (TAHSe) proton-ordering
type); inset: the case wherẽE0 = 0.5 on a logarithmic scale; and (b) the H-bond average proton
occupancies obtained in the GFA.

Figure 5 shows the comparison of the theoretical conductivity obtained for TAHSe with
the experimentally measured values [18]. The value of∇V can be found from the dependence
of the proton potential on the distance between the oxygen ions evaluated in [12], in this case
∇V = 2.4 eV Å−1. We can see that whereas in the superionic phase the two curves agree well,
at low temperatures the measured conductivity is lower. The observed drop ofσ at the phase
transition is steeper than the calculated one. The values of the activation energy evaluated
from (24) are the following: in the superionic phaseE0

a = 0.37 eV and in the saturation states
of the ordered phasesEa = 0.4 eV. Thus the theoretical activation energy in the superionic
phase agrees well with the experimentally obtained value,∼0.32 eV. However, in the ordered
low-temperature phase the theoretical value is lower than the value∼0.8 eV given in [18]. To
obtain a better fit to the experimental data in the low-temperature region, it is necessary to take
into account the additional short-range proton correlations which arise due to the polaronic
effect and lead to the higher values of the activation energy in the ordered phases. The relation
E0 > 2�R follows immediately from the values of the parameters in figure 5 and is valid for
strong proton–phonon coupling (the small-polaron regime) [13].
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Figure 5. Comparison of the temperature dependencies of
the protonic conductivity, measured for the crystal TAHSe and
evaluated using (23) (in this case�R = 70 cm−1, h̄ω0 =
455 cm−1).
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5. Conclusions

In this work, the protonic conductivity in M3H(XO4)2-type superionic crystals has been
analysed in the framework of the proton-ordering model, additionally taking into account
the reorientational proton-transfer processes. The one-minimum approximation has been
considered for the proton potential within the hydrogen bond. The expression for the
conductivity is obtained using the Kubo theory for the regime of strong coupling between
protons and anti-phase vibrational modes of the oxygen ions involved in the H-bond formation,
which leads to the shortening of this bond, localization of the proton and the strong polaronic
effect. The following key points should be stressed. First, we note that taking into account the
rearrangement of protons at the superionic phase transition provides the possibility of obtaining
a temperature dependence of the protonic conductivity with the characteristic kink observed
in experiments. Second, the activation energy evaluated for the superionic phase is lower than
that for the ordered phases due to the proton localization on the hydrogen bond as well as the
redistribution of the protons at the phase transition. The large polaron binding energy induces
a significant decrease of the conductivity value. And finally, to obtain a better fit of our results
with experiment for the low-temperature phases, the short-range correlations between protons
should also be considered.
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